Biomimetic Spiking Neural Network and Neurohybrid systems for AI and biomedical Timothée Levi IIS, The University of Tokyo, Japan IMS, University of Bordeaux, France MP-SoC 2019, July 8th

Content

- Context
- Digital system
- □ Artificial Intelligence
- Biomedical
- Conclusion

Neumorphic engineering

	Neuro	Maths onal els	Optimization	
Phys	sics	Dosimetric modelling	Wavelet filters	
Exposure system	s			nology
	Neuromorphism	1	In vitro	Diabetes
Neural probes	Custom IC		Ex vivo	Neurodegenerative disease
Analog processing	Negataskaslasi		In vivo	Spinal cord
	Nanotechnology			lesion

Real-time closed-loop systems at the biology-physics interface for diagnosis and therapy

Objective of our research

Le Masson, G., Renaud, S., Debay, D., and Bal, T. (2002). Feedback inhibition controls spike transfer in hybrid thalamic circuits. *Nature*. 417, 854-858.

Reconstruction of neural network

Spiking Neural Network (SNN)

Electronic: reproduces information processing in the nervous system.

Requirements for neural model

Action Potential

- Frequency
- Shape
- Closest to biology
- Different Neuron class
- Biophysically detailed

- Biological time scale
- Unsupervised real-time system

Neuron model

Which model to use for cortical spiking neural networks hardware simulations?

Source: www.izhikevich.com

Content

- Context
- Digital system
- □ Artificial Intelligence
- Biomedical
- Conclusion

Digital implementation of SNN

- FPGA board
- HH, Izh, LIF, DSSN model
- Real-time
- Unsupervised
- Biological scale
- Pipeline implementation

Few resources

Validation of the HH model

FPGA implementation of HH model

	Original equations	One core (only FS)	One core (FS, RS, IB, LTS) + N ² Synapses + synaptic noise	30 cores (FS, RS, IB, LTS) + N ² Synapses + synaptic noise	Bonabi et al., 2014	4 cores (only FS) Akbarzadel Sherbaf et a 2018
Ν	150	1034	500	15,000	150	2048
F (MHz)	100	100	100	100	63.386	58.8
LUT	169,003	4735	5551	167,346	86,032	46,045
FF	65,059	1552	2360	71,608	30,528	4,606
DSP	332	16	28	840	1,112	280

Synaptic noise

- Biomimetic synaptic noise
- Orstein Ulhenbeck process
- Tune spontaneous activity

Synapses

14

CPG with HH model

- Reproduction of Hill system
- HH neuron with synaptic plasticity
- Tunable period of frequency and duty cycle

1 25UV/ 2	200V/ <u>3</u>	4	U.Us	200.Uš/	Stop
²₽ ² 2///////////////////////////////////		MMMM Minimum and		MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	WWW.
¥.1.11111111		annann _{nan} annannannan	MMMM Promised		unun _{matta}

Choice of topology file

- Depending on the application
 - Choice of options
- Configuration file via hyperterminal
- Library of SNN for hybrid experiments:

ANN Name	Burst/min	Mean weights		Connectivity	
		Excitatory	Inhibitory	Connectivity	
ANN_1	1,95	0,99	-2,01	26%	
ANN_5	5,65	1	-1	25%	
ANN_10	9,3	1,02	-1,02	25%	
ANN_15	13,25	1,06	-1,2	25%	
ANN_20	23,45	1	-1	28%	

First week neuronal culture

Content

- Context
- Digital system
- □ Artificial Intelligence
- Biomedical
- Conclusion

Neuromorphic system for Al

Brain

Operates at low speeds (< 10 Hz)

Spike Encoding

Power and energy efficient

Asynchronous (no global clock) – *clock* free

Analog computing and communication

Memory and computation are fully integrated

Small world network organization with *multi-scale interactions*

Operates at very high speeds (> GHz)

Digital Encoding

Power and energy hungry

Synchronous (global clock) – *clock aligned*

Digital computing and communication

Memory and computation are separated

Access to a single pre-determined scale with local interactions only

Pattern recognition

- Use of SNN with plasticity
 - Reduce simulation time and power consumption
- Intelligent sensor, unsupervised learning
- Detect pattern hidden in noise
 - Remove of amplifier, filters, detection modules

Spatiotemporal spike patterns

Reservoir computing

- Real-time
- Pre-learning with STDP
- Learning with ReSuMe algorithm
- Detect pattern

- Test of neuron model (LIF, DSSN, HH)
- Test of plasticity rules (STDP, ReSuMe, others)
- Other layers

Biohybrid robotic

- SNN controlled the dynamic of BNN
- Biohybrid robot system controlled by SNN

- Biomimetic Microfluidic systems
 - Controlled by electrical, chemical and optical techniques
 - 'in vitro' human-like system
 - Future for computer (microfluidic brain)

Translation to BioIntelligence

Content

- Context
- Digital system
- □ Artificial Intelligence
- Biomedical
- Conclusion

Bio-hybrid experiments

Bi-directional communication between artificial and living neurons

Neuron model in FPGA

- □ Single cell study to small network
- Shape of action potential
- Multicompartmental approach
- Model for neurological disease
- Easier for neuroscientist
- More biomimetic dynamics

Neurological disease study

Diseases

Hybrid experiment with spinal cord

Replacement experiments

- Design of next-generation neuroprosthesis
- Restoring injuries at the level of the brain ('brain-prosthesis')

Optogenetic stimulation control by SNN

Using CPG for hybrid experiments

SNN for biomimetic stimulation

Content

- Context
- Digital system
- □ Artificial Intelligence
- Biomedical
- Conclusion

Conclusion and perspectives

- Different neuron model
- Digital Spiking Neural Network
- Applications on AI
 - Pattern recognition
 - Low power consumption
- Biomedical applications
 - Bio-hybrid exp
 - Neuroprostheses

Thanks to:

- Matthieu Ambroise
- Sahbi Baccar
- Filippo Grassia
- Farad Khoyratee
- Noëlle Lewis
- Sylvie Renaud
- Sylvain Saïghi
- Jean Tomas

- Takashi Kohno
- Kazuyuki Aihara
- Teruo Fujii
- Yoshiho Ikeuchi
- Paolo Bonifazi
- Michela Chiappalone
- Paolo Massobrio

Jennifer Hasler

Thank you for your attention Do you have any questions/?